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An investigation is made of the diffraction rings to be expected in a three-dimensional Fourier 
representation of a crystal strueture when the Fourier series germinates while the coefficients are 
appreciable. The method followed is an extension of that used by Bragg and West in discussing 
the analogous problem for two-dimensional projections. The diffraetion rings for one-, two- and 
three-dimensional representations are compared. 

The max ima  representing heavy atoms in a two- 
dimensional  Fourier projection of a crystal structure 
are often surrounded by one or more nearly circular 
regions of negative density, the origin of which is well 
understood. They are diffraction rings, closely analogous 
to those which surround the image of a star viewed with 
a teleseope of small aperture, and are due t.o the fact 
that  in summing the Fourier series from which the pro- 
jeetion is obtained it has been terminated  while its 
coefficients are still appreciable. We may think of the 
spectra tha t  can be given by the crystal, the ampli tudes 
of which give the coefficients of the series, as associated 
with the points of the reciprocal lattice. For a two- 
dimensional  projection, the reciprocal-lattice points 
concerned are those lying in a plane passing through the 
origin and perpendicular  to a zone axis of the crystal. 
Terms corresponding to all points in the plane up to 
a certain distance from the origin are included in the 
summation,  and we may  think of the circle drawn on 
the plane, having the origin as centre, and including 
these points, as defining an equivalent  optical aperture 
for the projection, which is, formally,  an optical image. 
The problem has been discussed from this point of view 
by Bragg & West (1930), who calculated, with certain 
approximations,  the form of the rings for a crystal 
consisting of point atoms, and found that  their results 
agreed faMv closely, as regards the positions of the 
max ima  and minima,  with the rings obtained by 
making a projection of a fictitious rock-salt: crystal, in 
which the atoms scattered a.s Hartree atoms at rest. 
Three-dimensional Fourier series are being increasingly 
used in crystal analysis,  and it seems desirable to con- 
sider the analogous problem when tim volume density 
is determined by means of such a series for points in a 
plane passing through the centre of the atom. 

Let b=  be the vector from the origin to the reciprocal- 
lattice point m, and let F(m) be the strueture ampl i tude 
of the speetrum corresponding to this point. The 
electron density at a point in the structure at a vector 
distanee r from tile origin is given bv 

l 
p(r) = i~ ~ _~'(-~) e--°" ~/"b,,, ~, (1) 

l i t  

where I" is the volume of unit cell of the structure, and 
the summat ion  is to be taken over all the reciprocal- 
lattice points rn. 

We now assume the lattice to be primitive,  and to 
consist of atoms at rest, which scatter as points, so that  
the structure factor for each spectrum is the same, and 
equal to F(O). Equat ion (1) in this ease becomes 

1 
f,(r) = 1" F(0) Z e - 2 " i  ~ .  b,,.). (2)  

7It 

Let us now suppose the unit. cell to become larger and 
larger so tha t  the reeiproeal-lattiee cell, tile volume of 
whieh is 1/V, becomes smaller ~.nd smaller. I f  the 
volume of the cell becomes large enough, we m a y  
suppose the reeiproeal-lattice points to be continuously 
distr ibuted with density 1', and may  replace the sum- 
mations of (2) by an integration throughout  the relevant  
volume of the reciproeal-la.ttice space. We then 
approach the case of the image of a single scattering 
point. 

Let. R, Fig. 1, be a reciprocal-lattice point fixed by 
the spherieal polar co-ordinates (b, 0, ¢) and let OP 
be a fixed vector r ,  lying in tile equatorial  plane. Let 
dv be an element of volume in the neighbourhood of R. 
The reciprocal-lattice points in this element  of volume, 
together with those in an equal element at R' at tile 
opposite end of the diameter  from R, contribute t.o the 
integral for p(r) an amount  

2F(0) cos 2rr(r. b) dr, 

and the va.lue of o(r) at the ex t remi ty  of the vector r 
is obtained by integrating this expression throughout  
the relevant, volume of the reciprocal-lattice space, 
t reating b as a vector continuously variable in length 
and direction. Let X be the angle between the veetors r 
and b. Then the scalar product b .  r is equal t.o br eos X, 
whieh, from the right-angled spherieal tr iangle AQR,  
Fig. 1, is equal to b r s in0  cosqS. As the element of 
volume dv, we take b 2 sin 0 dOdCdb, and the expression 
tbr p(r) then becomes 

p(r) = 2F(O b °- sin 0 
q./O , . ] 0  .I11 

x cos2rr(rbsinO cos¢)dbdOd~5, (3) 
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in which it is assumed tha t  the relevant  reciprocal- 
latt ice points  are all those lying wi thin  a sphere of 
radius B. Equa t ion  (3), when integrated,  gives the 
volume densi ty  in the Fourier  representat ion of the 
s tructure at a point  at  a radial  distance r from a 
scattering point. I t  is evident  tha t  the densi ty  dis- 
t r ibut ion about  the point  is spherically symmetr ical .  

The integrations m a y  be handled in the following 
manner :  

I f  Jo(x) is the Bessel funct ion of zero order, 

f2 " cos (x cos ¢) d¢ = 2rrJ0(x ). (4) 

In tegrat ion of (3) with respect to ¢ therefore gives 
/'B /" ~, 

p(r)=47rF(O) | | -  b~sinOJo(2,rbsinO)dOdb. (5) 
dO do 

gives a three-dimensional  image of the points  in the  
crystal  lattice. Each  image point  is surrounded by  
a series of concentric 'diffract ion spheres ' ,  the  radial  
d is t r ibut ion in which is given by  (8) if  the approxi- 
mat ion  is valid by  which the summat ion  of the Fourier  
series is replaced by an integration.  

The funct ion (I)(m) occurs in the theory of diffraction 
by a uniform spherical dis t r ibut ion of scat tering 
matter .  The scattering factor f v f  a sphere of scattering 
mat te r  of uniform densi ty  uni ty  and of radius R is 

given by f =  %rRS(I)(#R), (9) 

where /z  = (4n sin 0)/A. This m a y  easily be verified by  
integrat ing the well-known expression for the scat tering 
factor of a spherical shell, 4nr 2 (sin/~r)/#r, with respect 
to r (see also Debye, 1927). 
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Fig. 2. Curves of (A), 3(sin m-- m cos m)/m s ; (B), 2Jl(m)/m; 
Fig. 1. Definition of co-ordinates in reciprocal space. 

Using the expansion 

Jo(x) = 1 - 2-ex 2 + (2.4)-2x 4 - (2.4.6)-2x6 + . . . ,  

we m a y  express the in tegrand of (5) as a series, which 
m a y  be integrated te rm by term, first with respect to b 
and then  with respect to 0. This leads quite directly to 

E 2  4m 2 6m 4 8m 6 
P(r)=47rB3F(O) ~ - - - - + - - 5 !  7! 9! + . . .  (6) 

= 47rBSF(0) (sin m - m cos m)/m s, (7) 

where m=27rBr. I f  we put  

(I) (m) ---- 3 (sin m -- m cos m)/m a, 

the  expression for the densi ty  becomes 

p(r) = ~lrB 3 F(O)(P(m). (8) 

The first factor in (8) is the volume of the reciprocal- 
latt ice space wi th in  which the points of the latt ice used 
in the integrat ion lie, and  the densi ty  is of course pro- 
port ional  to this  when all the spectra have equal  
ampli tude.  The dis t r ibut ion of densi ty  about  the image 
points is given by  the funct ion (I)(m). The Fourier  series 

(C), (sin m)/m. 

The var ia t ion of(I)(m) is shown by  curve A of Fig. 2. 
The roots of the funct ion occur for m = 1-4301r, 2.459rr, 
3.471rr, 4.477rr, 5.482rr,.... I ts  value is un i ty  for m = 0 ,  
and the value at the first min imum,  which occurs at 
m = 5.763, is -0 .0850 .  Table  1 gives some values of the 
function. 

I f  d o is the spacing corresponding to the highest  order 
spectra used in making  the projection, and 0 the 
corresponding glancing angle, 

B =  2(sin 0)/h = 1/d o. 

Table 1. Values of(P(m) = 3(sin m - m cos m)/m :~ 
m ¢(m) 
0 1 
1 0.904 
2 0.653 
3 0.346 
4 0.087 
5 - 0.052 
6 -0.084 

m ¢(m) 
7 - 0.040 
8 0.013 
9 O.035 

10 0-024 
1 1  - 0-002 
12 -0.019 
13 -0.016 

The corresponding radius of the diffraction sphere of 
positive densi ty  is given by  

27rr/do=2rrrB= l.4301r, or r=O.715d o. 
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We m a y  compare these results with those obtained 
for the two-dimensional projection. In this case the 
appropriate  Fourier series for point atoms is 

¢(r) = ( l /A) F ( 0 ) ~  cos 2n(r .  bin), (10) 

where the summat ion  now extends only over the re- 
ciprocal-lattice points lying in a plane, the area of the 
mesh of which is A. The l imit ing integral form of the 
series for a very large mesh is now 

cr(r)=2F(0) I TM ~Bbcos(2nrbcos¢)dbd¢ 
J 0 J 0  

=2F(o)f/bJo(2rrrb)db, (11) 

by (4). Using the relation 

flX'lo(X)=t,Ii(t), 

we can at once write (11) in the form 

o'(r) = B" F(t)) 2.]~(m)/r~, (12) 

where again m =2nBr, the result obtained by Bragg 
& West. The variat ion of 2J1(m)/m with m is shown 
in curve B, Fig. 2. It  is the well-known Fraunhofer  
diffraction function for a circular aperture. The radius 
of the positive diffraction disk is in this case equal to 
0"61d 0, and is sl ightly less than  for the three-dimen- 
sional case. On the other hand, the negative trough 
surrounding the first m a x i m u m  is considerably more 
marked,  - 0.132 instead of - 0.085. 

For completeness, we may  include the one-dimen- 
sional series, the use of which was first suggested by 
Bragg (1915). This series is 

S(r) = (l/a) ~ F(n) e-2"iirb,,), 
It 

where b n is the distance of the nth reciprocal-lattice 
point in a row from the origin, corresponding to the nth 
order spectrum from a set of crystal planes of spacing a. 
S(r) dr gives the total diffracting mat ter  in the unit  cell 
between two planes parallel to the crystal planes con- 
sidered, and at distances r and r+dr from the origin. 
Treat ing this series in the same way as the others, we 
obtain for the case of point atoms widely spaced 

S(r) = 2BF(0) (sin m)/m. (13) 

The function (sin m)/ra is plotted in Fig. 2, curve C, for 
comparison with other curves. The false detail  in one-, 
two- and three-dimensional  Fourier representations of 
point atoms, when reciprocal-lattice points up to a 
distance B from the origin are considered, is thus given 

by the Fraunhofer  diffraction function for a slit of 
width 2B, a circular aperture of radius B, and a sphere 
of radius B, respectively. 

Discussion of  results 

In the above t rea tment ,  only point atoms at rest have 
been considered, and it would not therefore at first 
sight appear  to apply  at all closely to actual atoms. In 
the heavier atoms, however, a considerable fraction of 
the average electron populat ion lies at distances from 
the atomic centre smaller than  the wave-length of the 
radiations commonly used in crystal analysis.  To these 
electrons, the t rea tment  given should apply  fairly well, 
and, indeed, the work of Bragg & West  quoted above 
shows tha t  even for comparat ively  light atoms such as 
chlorine there is fair correspondence between the 
diffraction rings observed in the projections of the 
artificial crystal, with tile series terminated  at moderate  
values of B, and the calculated diffraction pattern.  In  
any  actual  crystal the outer electrons of the atom, and 
the thermal  motion, by reducing the intensities of the 
high-order spectra, tend to smear out the rings; but  
well-marked rings do occur in two-dimensional  pro- 
jections from crystals containing heavy atoms, and the 
example of iron pyrites has been discussed by Parker  
& Whitehouse (1932). 

The t rea tment  given above shows tha t  false detail 
due to diffraction is also to be expected in three- 
dimensional  representations. The regions of negative 
density are, however, considerably shallower, relative 
to the height of the main  max imum,  than  in the two- 
dimensional  case, and the effects will be less marked,  
and might  become inappreciable owing to the smearing- 
out tendencies tha t  must  always be present. In a recent, 
example of a three-dimensional  analysis of a crystal 
containing a heavy atom, tha t  of p-chloriodoxy- 
benzene by Archer (1948) in this laboratory, no appre- 
ciable diffraction rings were observed round the peaks 
due to the iodine atoms, but  the theory given above 
suggests tha t  it would be unsafe to conclude from this 
single example tha t  the effect can be neglected in three- 
dimensional  analyses. 

In  conclusion, I should like to thank  Dr S. Skewes of 
the Univers i ty  of Cape Town, who pointed out to me 
the form of the sum of the series in equation (6). 
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